Curves defined by Parametric equations

When the path of a particle moving in the plane is not the graph of a function, we cannot describe it using a formula that express y directly in terms of x, or x directly in terms of y. Instead, we need to use a third variable t, called a parameter and write:

$$
x=f(t) \quad y=g(t)
$$

- The set of points $(x, y)=(f(t), g(t))$ described by these equations when t varies in an interval / form a curve, called a parametric curve, and $x=f(t), y=g(t)$ are called the parametric equations of the curve. Often, t represents time and therefore we can think of $(x, y)=(f(t), g(t))$ as the position of a particle at time t.
- If I is a closed interval, $a \leq t \leq b$, the point $(f(a), g(a))$ is the initial point and the point $(f(b), g(b))$ is the terminal point.

Example 1

Example 1 Draw and identify the parametric curve given by the parametric equations:

$$
x=\cos t \quad y=\sin t \quad 0 \leq t \leq 2 \pi
$$

t	x	y
0		
$\frac{\pi}{4}$		
$\frac{\pi}{2}$		
$\frac{3 \pi}{4}$		
π		
$\frac{3 \pi}{2}$		
2π		

- First we look at points on the curve for particular values of t (in table).

Example 1

Example 1 Draw and identify the parametric curve given by the parametric equations:

$$
x=\cos t \quad y=\sin t \quad 0 \leq t \leq 2 \pi
$$

t	x	y
0	1	0
$\frac{\pi}{4}$		
$\frac{\pi}{2}$		
$\frac{3 \pi}{4}$		
π		
$\frac{3 \pi}{2}$		
2π		

- First we look at points on the curve for particular values of t (in table).

Example 1

Example 1 Draw and identify the parametric curve given by the parametric equations:

$$
x=\cos t \quad y=\sin t \quad 0 \leq t \leq 2 \pi
$$

t	x	y
0	1	0
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{2}$		
$\frac{3 \pi}{4}$		
π		
$\frac{3 \pi}{2}$		
2π		

- First we look at points on the curve for particular values of t (in table).

Example 1

Example 1 Draw and identify the parametric curve given by the parametric equations:

$$
x=\cos t \quad y=\sin t \quad 0 \leq t \leq 2 \pi
$$

t	x	y
0	1	0
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{2}$	0	1
$\frac{3 \pi}{4}$		
π		
$\frac{3 \pi}{2}$		
2π		

- First we look at points on the curve for particular values of t (in table).

Example 1

Example 1 Draw and identify the parametric curve given by the parametric equations:

$$
x=\cos t \quad y=\sin t \quad 0 \leq t \leq 2 \pi
$$

t	x	y
0	1	0
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{2}$	0	1
$\frac{3 \pi}{4}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
π		
$\frac{3 \pi}{2}$		
2π		

- First we look at points on the curve for particular values of t (in table).

Example 1

Example 1 Draw and identify the parametric curve given by the parametric equations:

$$
x=\cos t \quad y=\sin t \quad 0 \leq t \leq 2 \pi
$$

t	x	y
0	1	0
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{2}$	0	1
$\frac{3 \pi}{4}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
π	-1	0
$\frac{3 \pi}{2}$	0	-1
2π	1	0

- First we look at points on the curve for particular values of t (in table).

Example 1

Example 1 Draw and identify the parametric curve given by the parametric equations:

$$
x=\cos t \quad y=\sin t \quad 0 \leq t \leq 2 \pi
$$

t	x	y
0	1	0
$\frac{\pi}{4}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
$\frac{\pi}{2}$	0	1
$\frac{3 \pi}{4}$	$-\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$
π	-1	0
$\frac{3 \pi}{2}$	0	-1
2π	1	0

- First we look at points on the curve for particular values of t
(in table).
- Plotting these points, we get points on a circle.

- Filling in the details, we see that if as t increases from 0 to 2π, the points trace out a circle of radius 1 in an anti-clockwise direction, with I.P. $(1,0)$ and T.P. $(1,0)$.

Example 2

As t increases, we travel along the curve in a particular direction giving the curve an orientation which is often indicated by arrows. The curve however may pass through a section of the curve repeatedly and may do so in different directions for different values of t.
Example 2 Describe the parametric curve represented by the parametric equations: $x=\sin 2 t$

$$
y=\cos 2 t \quad 0 \leq t \leq 2 \pi
$$

t	x	y
0		
$\pi / 4$		
$\pi / 2$		
$3 \pi / 4$		
π		
$3 \pi / 2$		
2π		

- We find some points on the curve (see table)

Example 2

As t increases, we travel along the curve in a particular direction giving the curve an orientation which is often indicated by arrows. The curve however may pass through a section of the curve repeatedly and may do so in different directions for different values of t.
Example 2 Describe the parametric curve represented by the parametric equations: $x=\sin 2 t \quad y=\cos 2 t \quad 0 \leq t \leq 2 \pi$

t	x	y
0	0	1
$\pi / 4$	1	0
$\pi / 2$		
$3 \pi / 4$		
π		
$3 \pi / 2$		
2π		

- We find some points on the curve (see table)

Example 2

As t increases, we travel along the curve in a particular direction giving the curve an orientation which is often indicated by arrows. The curve however may pass through a section of the curve repeatedly and may do so in different directions for different values of t.
Example 2 Describe the parametric curve represented by the parametric equations: $x=\sin 2 t$

$$
y=\cos 2 t \quad 0 \leq t \leq 2 \pi
$$

t	x	y
0	0	1
$\pi / 4$	1	0
$\pi / 2$	0	-1
$3 \pi / 4$	-1	0
π		
$3 \pi / 2$		
2π		

- We find some points on the curve (see table)

Example 2

As t increases, we travel along the curve in a particular direction giving the curve an orientation which is often indicated by arrows. The curve however may pass through a section of the curve repeatedly and may do so in different directions for different values of t.
Example 2 Describe the parametric curve represented by the parametric equations: $x=\sin 2 t \quad y=\cos 2 t \quad 0 \leq t \leq 2 \pi$

t	x	y
$(I . P) 0$.	0	1
$\pi / 4$	1	0
$\pi / 2$	0	-1
$3 \pi / 4$	-1	0
π	0	1
$3 \pi / 2$	0	-1
$(T . P) .2 \pi$	0	1

- We find some points on the curve (see table)
- We see that the points are on the unit circle, but the curve sweeps around it twice in a clockwise direction.

Example 2

Note The curve in examples 1 and 2 are the same but the parametric curve are not. Because in one case the point $(x, y)=(\cos t, \sin t)$ moves once around the circle in the counterclockwise direction starting from (1, 0). In example 2 instead, the point $(x, y)=(\sin 2 t, \cos 2 t)$ moves twice around the circle in the clockwise direction starting from $(0,1)$.

Example 3

Example 3 Sketch the graph of the curve described by the following set of parametric equations.

$$
x=t^{3}-t, \quad y=t^{2}, \quad 0 \leq t<\infty
$$

t	x	y
0		
0.5		
1		
1.5		
2		

- We find some points on the curve (see table)

Example 3

Example 3 Sketch the graph of the curve described by the following set of parametric equations.

$$
x=t^{3}-t, \quad y=t^{2}, \quad 0 \leq t<\infty
$$

t	x	y
0	0	0
0.5	-0.375	0.25
1	0	1
1.5	1.875	2.25
2	6	4

- We find some points on the
curve (see table)
- We plot the points and join them to get a curve similar to the one shown.

Example 3

Example 3 Sketch the graph of the curve described by the following set of parametric equations. $x=t^{3}-t, \quad y=t^{2}, \quad 0 \leq t<\infty$

- So far, we have the following picture:

What happens after $t=2$? Can the curve turn around again?

- I claim that $x(t)$ and $y(t)$ are always increasing for $t \geq 2$ and hence the curve cannot turn again.
- We have $x^{\prime}(t)=3 t^{2}-1$, therefore $x^{\prime}(t)=0$ when $t= \pm \frac{1}{\sqrt{3}}$. Since $x^{\prime}(1)=2>0$, we can conclude that $x^{\prime}(t)>0$ on the interval $\left(\frac{1}{\sqrt{3}}, \infty\right)$ and therefore, the values of x are increasing on that interval.
- Since $y^{\prime}(t)=2 t>0$ for $t>2$, we see that the values of y are increasing when $t>2$.
- Therefore there is only one turning point on the curve.

Converting: Parametric to Cartesian

There is no exact method for converting parametric equations for a curve to an equation in x and y only. If we can solve for t in terms of either x or y, we can substitute this for the value of t in one of the equations to get an equation in x and y only.
Example 4 Covert the following parametric equation to an equation relating x and y :

$$
x=2 t+1, \quad y=t-2, \quad-\infty<t<\infty
$$

- We can solve for t in terms of y. Since $y=t-2$, we have $t=y+2$.
- Substituting this expression for t in the equation for x, we get $x=2(y+2)+1=2 y+5$.
- Therefore all points on the parametric curve are on the line $x=2 y+5$. Since t takes all values in the interval $(-\infty, \infty), y$ also runs through all values from $-\infty$ to ∞ and the parametric curve describes the entire line.

Example: Parametric to Cartesian

Sometimes, we can see a relationship between the x and y co-ordinates and thus eliminate the t.
Example 5 Convert the following parametric equation to an equation relating x and y :

$$
x=2 \cos t \quad y=3 \sin t
$$

and describe the curve traced when $0 \leq t \leq 4 \pi$.

- We know that $\cos ^{2} t+\sin ^{2} t=1$.
- Therefore

$$
\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2}=1
$$

- The curve traced by this parametric equation is therefore an ellipse. If we check some points we see that the initial point is at $(2,0)$ and the ellipse is traced in an anti-clockwise direction. Because the point on the curve at $t+2 \pi$ is the same as the point at t, we see that the curve is traced twice.

Converting: Cartesian to Parametric

Easy cases If a curve is defined by the equation $y=f(x)$, the equations $x=t$ and $y=f(t)$ give parametric equations describing the curve.
If a curve is described by the equation $x=g(y)$, the equations $x=t$ and $x=g(t)$ give parametric equations describing the curve.
Example 6 Give parametric equations describing the graph of the parabola $y=x^{2}$.

- We can let $x=t$, then $y=t^{2}$.
- We trace out the entire parabola from left to right if we let t run from $-\infty$ to ∞.

Example: Cartesian to Parametric

Example 7 Find parametric equations on $0 \leq t \leq 2 \pi$ for the motion of a particle that starts at $(a, 0)$ and traces the circle $x^{2}+y^{2}=a^{2}$ twice counterclockwise.

- Each point has the form $x(t)=a \cos 2 t, y(t)=a \sin 2 t$, where $2 t$ is the size of the angle that a ray from the point to the origin makes with the positive x axis.
- Since $0 \leq t \leq 2 \pi$ implies that $0 \leq 2 t \leq 4 \pi$, we get that the particle sweeps around the circle twice.

Extra Example: Parametric to Cartesian

Example 5 Convert the following parametric equation to an equation relating x and y :

$$
x=\sin t \quad y=\cos ^{2} t
$$

and describe the curve traced when $0 \leq t \leq 2 \pi$.

- We know that $\cos ^{2} t+\sin ^{2} t=1$.
- Therefore

$$
x=\sin t \quad y=\cos ^{2} t=1-x^{2}
$$

- The curve traced by this parametric equation is therefore on the graph of $y=1-x^{2}$.
- I.P. $(0,1), t=\frac{\pi}{2} \quad \rightarrow(1,0), \quad t=\pi, \quad \rightarrow \quad(0,1), \quad t=\frac{3 \pi}{2} \rightarrow(-1,0)$, $t=2 \pi \rightarrow \quad(0,1)$.
- We see that the particle oscillates back and forth between $(1,0)$ and $(-1,0)$.

